
Incremental Server Deployment for Scalable
NFV-enabled Networks

Jianchun Liu1,4 Hongli Xu∗2,4 Gongming Zhao2,4 Chen Qian3 Xingpeng Fan2,4 Liusheng Huang2,4
1School of Data Science, University of Science and Technology of China

2School of Computer Science and Technology, University of Science and Technology of China
3Department of Computer Science and Engineering, University of California Santa Cruz, USA

4Suzhou Institute for Advanced Study, University of Science and Technology of China

Abstract—Network Function Virtualization (NFV) is a new
paradigm to enable service innovation through virtualizing
traditional network functions. To construct a new NFV-enabled
network, there are two critical requirements: minimizing server
deployment cost and satisfying switch resource constraints. How-
ever, prior work mostly focuses on the server deployment cost,
while ignoring the switch resource constraints (e.g., switch’s flow-
table size). It thus results in a large number of rules on switches
and leads to massive control overhead. To address this challenge,
we propose an incremental server deployment (INSD) problem
for construction of scalable NFV-enabled networks. We prove
that the INSD problem is NP-Hard, and there is no polynomial-
time algorithm with approximation ratio of (1− ε) · lnm, where
ε is an arbitrarily small value and m is the number of requests
in the network. We then present an efficient algorithm with an
approximation ratio of 2 · H(q · p)1, where q is the number
of VNF’s categories and p is the maximum number of requests
through a switch. We evaluate the performance of our algorithm
with experiments on physical platform (Pica8), Open vSwitches,
and large-scale simulations. Both experiment and simulation
results show high scalability of the proposed algorithm. For
example, our solution can reduce the control and rule overhead
by about 88% with about 5% additional server deployment,
compared with the existing solutions.

Index Terms—Incremental Server Deployment, Scalability,
Rules, NFV.

I. INTRODUCTION

Today’s networks rely on a wide spectrum of specialized
network functions (NFs) or middleboxes (MBs) [1] [2], such
as firewalls, traffic monitors, web proxies, and instruction
detection systems. They have been widely deployed in various
networking scenarios, including campus networks, backbone
networks, and data center networks. Network traffic usually
needs to pass through several NFs in a particular order, which
is known as a service function chain (SFC) [3]. For instance,
in data centers, some requests need to traverse a firewall and a
proxy in sequence, while other requests need only to traverse
the firewall for security processing.

Due to the high price and inflexibility of physical NFs
or MBs, Network Function Virtualization (NFV) [4] has
been an emerging approach in which network functions are
no longer executed by dedicated hardware but instead can
be run on general-purpose servers located in cloud nodes
[5], called Virtual Network Functions (VNFs) [6]. Compared
with the physical NFs, the NFV technology contributes to

1H(n) is the n-th harmonic number defined as H(n) = 1+ 1
2
+...+ 1

n
≈

logn.

reducing the price and improving the system flexibility. With
these advantages of NFV, many users, including corporations,
communities, and governments, are expecting to deploy an
NFV-enabled network. Since scalability has been a core issue
for large network development, there are two critical require-
ments of scalability, minimizing server deployment cost and
satisfying switch resource constraints for rule configuration.

VNFs are running on the commodity general-purpose
servers. The problem of VNF placement on servers has been
widely studied in recent years for different targets, such as
link/server load balancing, resource utility maximization, and
reliability [7] [8] [9] [10] [11] [12]. Furthermore, due to traffic
dynamics, different joint optimization problems have been
investigated in literatures [13] [14]. Most of these studies by
default assume that a set of servers have been deployed on
given positions. In fact, for enterprise and edge networks, a
large number of production servers are unavailable, and it is
also challenging and time-consuming to find the right hosting
servers. Moreover, with the increase of hosting servers, the
complexity of VNF management, e.g., fault diagnosis and
localization, grows especially as the servers may be from
different owners [15] [16]. Different from the existing work
on VNF placement or the joint optimization problem, we
mainly focus on the incremental server placement for VNFs
so as to pursue the minimum deployment cost while satisfying
hardware resource constraints.

Previous work [9] [17] has studied the incremental server
deployment for network function virtualization. However,
these methods have two main disadvantages of network scal-
ability. First, almost all the previous solutions, e.g., [9] [17],
ignore the impact of the limited Ternary Content Addressable
Memory (TCAM) size on the switches. TCAMs are 400×
more expensive and consume 100× more power per Mbit
than the RAM-based storage on the switches [18]. Besides, the
lookup speed and insertion speed are highly related to the size
of TCAM. As a result, most of today’s commodity switches
only support 4-20K entries [18] (e.g., 6K entries on HP
HPE6960 switches and 4K entries on PICA8 P-5401 switches
[19]). The previous solutions implement the SFC routing with
the granularity of ingress-egress pairs, which needs a large
number of rules on switches for VNF processing. For example,
a data center network with a thousand switches [20] may
require up to millions of possible rules on a switch, which
certainly does not fit the TCAM size. Moreover, installing

2361
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 22,2020 at 02:08:41 UTC from IEEE Xplore. Restrictions apply.

2

Schemes SFC Policy No. of Rules Overhead
GFT [9] No Many High

T-SAT [17] Yes Many High
Our work Yes Few Low

TABLE I: Comparison of existing server deployment solutions and
our scheme.

more TCAM rules also leads to massive control overhead.
Second, some methods, e.g., GFT [9], only focus on one type
of network function, which can not be directly applied to the
situation of SFCs. Though the work T-SAT [17] extends the
server deployment to consider the SFC requirement, their al-
gorithm can not guarantee the approximation performance. We
summarize the advantages and disadvantages of the existing
solutions and our scheme in Table I.

We believe it is necessary to design a new solution of
incremental server deployment to construct a scalable NFV-
enabled network with TCAM size constraint. Our solution is
motivated by the following considerations. An SFC request
is specified by an ingress switch, an egress switch and the
SFC requirement. Since request-based SFC needs to install a
massive number of rules on switches, we expect to use coarse-
grained (i.e., wildcard-based) rules to effectively reduce the
TCAM cost and control overhead. To the best of our knowl-
edge, we are the first to propose a provably efficient algorithm
for incremental server deployment within the network while
taking the flow table size constraint into considerations. The
main contributions of this paper are:
• We propose an incremental server deployment (INSD)

problem for the construction of scalable NFV-based
networks and analyze its NP-Hardness. We also prove
that there is no polynomial-time algorithm with an ap-
proximation ratio of (1−ε)·lnm, where ε is an arbitrarily
small value, and m is the number of requests in the
network.

• We present an efficient and polynomial-time algorithm,
called KPGD, for the INSD problem, and analyze the
approximation ratio of 2 ·H(q ·p), where q is the number
of VNF’s categories, and p is the maximum number of
requests through a switch.

• We evaluate the performance of our proposed method
with experiments on both physical platform (Pica8) and
Open vSwitch (OVS), as well as large-scale simulations.
Both experimental results and simulation results show
that the proposed solution can achieve better scalability
in terms of deployment and configuration cost. For ex-
ample, our solution can reduce the control overhead by
about 88% with deploying additional servers about 5%,
compared with the existing solutions.

The rest of this paper is organized as follows. Section II
formalizes the INSD problem and gives the inapproximation
result. We propose an approximation algorithm for INSD
and analyze the approximation performance in Section III.
We report our simulation results and experimental results in
Section IV. We conclude the paper in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we define the network model in Section
II-A. Besides, we illustrate the rule installment for one VNF

Symbol Semantics
V a set of switches
Ve a set of egress switches
R a set of requests
Rv a set of requests whose egress switch is v ∈ Ve
F a set of VNFs
q the number of VNF’s categories, i.e., q = |F|
p the maximum number of requests on all switches

c(v)
the maximum number of rules for VNF
processing on switch v

c(s) the processing capacity of server s
N(r) the number of packets of request r
θf the processing cost per-packet of VNF f
xv a server is deployed on switch v or not

yfv,t
a rule matching egress switch t and VNF f is
installed on switch v or not

δfi the requests covered by VNF f on switch vi

αfi
rule cost of the requests covered by VNF f
on switch vi

βfi
processing cost of the requests covered by
VNF f on switch vi

TABLE II: Key Notations

instance (Section II-B) and SFC processing (Section II-C).
Finally, we give the problem formulation in Section II-D.

A. Network Model
An SDN is typically separated into the control plane and

the data plane. The control plane consists of a logically-
centralized controller, which may be a cluster of distributed
controllers [21] [22] and is responsible for managing the
whole network. The data plane consists of a set of n SDN
switches, V = {v1, ..., vn}. Without loss of generality, the
former z switches are egress switches, denoted as Ve =
{v1, ..., vz}. The network topology can be modeled by a
connected graph G = (V,E), where E is the set of links
connecting the switches. Since we focus on the data plane
metrics (e.g., the number of deployed servers and rules),
the number of controllers will not significantly impact these
metrics. For simplicity, we assume that there is only one
controller in the control plane.

There is a set of VNFs, e.g., firewalls, IDSes and proxies,
denoted as F = {f1, f2, ..., fq}, with q = |F|. Let θf indicate
the processing cost per packet (measured by the number of
CPU cycles) for each VNF f . Given a set of requests R =
{r1, r2, ..., rm} with m = |R|, each request is specified by an
ingress switch, an egress switch and the SFC requirement. For
simplicity, if request ri is processed by VNF fj , we call that
request ri is covered by VNF fj . Through long-term traffic
observation, the controller has full knowledge of the requests,
e.g., the number of packets N(r) of request r ∈ R. We use
Rv to represent the set of requests, whose egress switch is
v ∈ Ve. For ease of reference, the key notations are listed in
Table II.

B. Rule Installment for One VNF Instance
In this section, we will introduce the processing of rule

installment on switches in the case of one VNF instance. To

2362
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 22,2020 at 02:08:41 UTC from IEEE Xplore. Restrictions apply.

3

Rule Installment under Different Schemes

Scheme V1 V3

Request-based 6 6
Egress-based 2 2

S2

v1

v3

v2S1

v4

1

2

3

1

2

3

1

2

1

2

Fig. 1: Rule Installment for One VNF Instance. The left plot
illustrates an example with 4 switches and 2 servers. The right table
illustrates the number of required rules on switches v1 and v3 under
different rule installment schemes.

facilitate understanding, we illustrate rule installment through
an example. On the left plot of Fig. 1, there are 4 switches
and 12 ingress-egress switch pairs. Suppose that there are 12
requests in the network and each request between a switch pair
is forwarded in a counter-clockwise direction. For example,
the forwarding path from v2 to v4 is v2 → v1 → v4. VNF
instances are deployed on two servers, which are connected
to switches v1 and v3, respectively. All the requests should be
processed by a VNF instance. Assume that the paths of these
requests are available to the controller with the help of SDN’s
centralized control. Then the controller configures 6 requests
(e.g., v2 → v1, v3 → v1, v4 → v1, v1 → v4, v2 → v4,
v3 → v4) to be processed by server s1, and other requests are
processed by s2. We focus on the rule installment on switches
v1 and v3.

There are two different schemes of rule installment. First,
the previous VNF placement solutions assume by default
that the request-based rules will be installed on switches [2]
[23]. Thus, there requires 12 rules for VNF processing in the
network, i.e., 6 rules on both switches v1 and v3. The rules
for VNF processing on switch v1 are listed in Table III. For
example, we install a rule “src = v2, dst = v1, inport =
3, actions = output : 1” for request v2 → v1.

Requests Request-based Egress-based

v2 → v1
src=v2, dst=v1, inport=3,

actions=output:1 dst=v1, inport=3,

v3 → v1
src=v3, dst=v1, inport=3,

actions=output:1actions=output:1

v4 → v1
src=v4, dst=v1, inport=3,

actions=output:1

v1 → v4
src=v1, dst=v4, inport=3,

actions=output:1 dst=v4, inport=3,

v2 → v4
src=v2, dst=v4, inport=3,

actions=output:1actions=output:1

v3 → v4
src=v3, dst=v4, inport=3,

actions=output:1

TABLE III: Installed Rules for VNF Processing on Switch v1.

Second, to reduce the number of required rules, we then
consider the egress switch based wildcard scheme for rule
installment. Since this scheme just needs to install wildcard
rule for each egress switch, only 4 rules are required for VNF
processing in the network. Specifically, both switches v1 and
v3 require to install two rules, as shown in Table III. Each
wildcard rule only specifies the egress switch (e.g., v1 or v4),
and can match all the ingress switches in the network. For
example, we need to install a rule “dst = v1, inport =
3, actions = output : 1” for the three requests with the
same egress switch v1. The egress switch based scheme can
reduce the number of required rules by 67% compared with

the request based scheme in this example. Thus, we use the
egress switch based scheme so as to meet the needs of less
rule cost and less control overhead in our proposed solution.

C. Tag Operations for SFC Processing

It is worth noting that, even if the egress-based rules for
VNF processing have been installed, the request still may
not traverse the SFC properly. To this end, we adopt efficient
tag operations to support SFC [2] [23]. Specifically, to record
the SFC information, we use two fields (e.g., VLAN, MPLS
labels or other unoccupied fields) in the packet header as
tags. The controller adopts unique identities (e.g., 1, 2, ..., n)
to distinguish these n NFs in the network. For example, in a
moderate-size network, the network may contain less than 255
NFs [24]. Then, it only requires 8 bits to differentiate 255 NFs.
Moreover, the SFC’s length is usually not more than 5 [24].
So, it will cost 5 bytes (or 40 bits) for the SFC information
in the packet header. For some programmable switches (e.g.,
Open vSwitches [25], barefoot switches [26]), adding two new
fields into the packet header is easily implemented.

Assume that a request from subnet 10.1.1.0/24 to subnet
10.1.2.0/24 should traverse a service function chain: Firewall-
IDS-NAT for security benefits. We use 0x01-0x02-0x03 to
denote the SFC requirement. We adopt two fields, Network
Functions Label Matching (NFLM) and MPLS, to match the
next NF to be processed and to store the rest NFs in the SFC.

0x02 0x0300

NFLM
Field

MPLS
Field

Other
Fields

0x01 0x0203

NFLM
Field

MPLS
Field

Other
Fields

Fig. 2: Illustration of Tag Operations.

We illustrate the tag operations through an example. When
a request arrives at the ingress switch, the controller configures
the SFC policy (e.g., NFLM=0x01, MPLS=0x0203), as shown
in the left plot of Fig. 2. After the request has been processed
by the VNF instance 0x01, the switch will update two fields
in the packet header. The switch sets the NFLM field as the
first NF (i.e., 0x02) in the MPLS field, and removes this NF
from the MPLS field. For example, after the request has been
processed by the Firewall function, we set the NFLM field
as 0x02 (i.e., IDS), and update the MPLS field as 0x0300, as
shown in the right plot of Fig. 2. More detailed information
about tag operation and SFC routing can refer to our previous
work [27]. Thus, the SFCs of all requests in the network can
be processed properly according to the rule matching and tag
operation.

D. Problem Definition

In this section, we give the definition of the Incremental
Server Deployment (INSD) problem. The network adminis-
trators will specify the SFC processing requirement for each
request [2]. Since we do not consider the VNF processing
order in the server deployment, the set of VNFs in the SFC
requirement of request r is denoted as Fr. For example, if
the SFC requirement of request r is Firewall-IDS-NAT, Fr =
{IDS, NAT, Firewall}. Note that the SFC requirements can

2363
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 22,2020 at 02:08:41 UTC from IEEE Xplore. Restrictions apply.

4

be satisfied through efficient routing algorithms [2] [28]. For
simplicity, we suppose that each VNF can work independently
with others [7] [29].

Assume that the controllers have pre-computed the path for
each request r [30] [31], denoted by pr. We will also study
the problem without pre-computed paths as our future work.
The two resource constraints should be considered here. On
one hand, we consider the rule cost for VNF processing. Let
yfv,t ∈ {0, 1} denote whether a rule matching the egress switch
t and VNF f will be installed on switch v or not. For example,
as shown in Fig. 1, there is one request v4 → v2 that needs to
be processed by VNF f1 placed on server s2. Assume that we
have installed a wildcard rule matching egress switch v2 on
switch v3, which means yf1v3,v2 = 1. Then, all requests with
the same egress switch v2 will be forwarded to server s2 for
VNF processing. Due to the TCAM size constraint, we expect
that the rule cost on switch v for VNF processing should not
exceed a given threshold c(v).

VNFs CPU Cycles per Packet
Firewall 1348

NAT 1631
IDS 1348

Monitor 1676

TABLE IV: Per-Packet Processing Cost of VNFs. [29]

On the other hand, we consider the resource consumption
for VNF processing on servers. The resources can be ex-
pressed in terms of CPU, memory and network bandwidth.
The existing work [13] shows that CPU is usually the bot-
tleneck resource for most VNF instances. Moreover, different
VNFs require different numbers of CPU cycles for processing
a packet. By testing in [29], we list the number of required
CPU cycles for some typical VNFs in Table IV. According
to installed rules on a switch, we know which flows will
be processed on the connected server. As a result, we can
derive the total processing cost on a server. We require that
the total VNF processing cost on a server s should not exceed
its computing capacity c(s).

The objective of the INSD problem is to minimize the
number of deployed servers in the network. Accordingly, we
formulate the INSD problem as follows:

min
∑
v∈V

xv

s.t.

xv ≥ yfv,t, ∀v ∈ V, t ∈ Ve, f ∈ F∑
v∈pr

yfv,tr ≥ 1, ∀r ∈ R, f ∈ Fr∑
t∈Ve

∑
f∈F

yfv,t ≤ c(v), ∀v ∈ V∑
t∈Ve

∑
r∈Rv

∑
f∈Fr

yfv,trN(r)θf ≤ c(sv), ∀v ∈ V

xv ∈ {0, 1}, ∀v ∈ V
yfv,t ∈ {0, 1}, ∀v ∈ V, t ∈ Ve, f ∈ F

(1)
We use a binary variable xv to indicate whether a server will

be deployed on switch v or not. The first set of inequalities
means that each request will be processed by a server only

if the server has been deployed on switch v. The second
set of inequalities means that each VNF f ∈ Fr should be
deployed at least once along the path of request r, where
tr denotes the egress switch of request r. The third set of
inequalities expresses the flow-table size (FTS) constraint for
VNF processing on a switch. The fourth set of constraints tells
that the total cost for VNF’s processing should not exceed
the server’s computing capacity. The objective is to deploy a
minimum number of servers for NFV-enabled networks.

Theorem 1. The INSD problem is NP-Hard.

Proof. Consider an instance of the Minimum Set Cover
(MSC) problem [32]: let E = {l1, l2, ..., lx} be a set of a
elements, C = {Ei ⊆ E, i = 1, 2, ..., y} is a set of subsets of
E, where y = |C|. MSC will choose a minimum set C ′ ⊆ C
such that each element l ∈ E is contained in at least one
member of C ′. Then, we consider a special case of the INSD
problem, in which there is only one VNF in the network and
each server is equipped with the infinite computing capacity.
Each request is abstracted as an element in E and the request
set through switch vi is abstracted as Ei. We expect to deploy
the minimum number of servers to cover all requests in the
network. Thus, the special instance of the INSD problem
becomes the traditional MSC problem, which is NP-Hard.
Accordingly, the INSD problem is NP-Hard too.

Theorem 2. The INSD problem cannot be solved by a
polynomial time algorithm with an approximation ratio of
(1 − ε) · lnm, for any ε > 0, where m is the number of
requests in the network, unless P = NP .

Proof. Some previous works, e.g., Raz and Safra [33], Feige
[34], have proved that the MSC problem cannot be approx-
imable within (1 − ε) · lnn, for any ε > 0, where n is the
number of elements in the MSC problem, unless P = NP .
Since the MSC problem is a special case of our INSD
problem, if there exists an algorithm with a better approxi-
mation ratio than (1 − ε) · lnm, where m is the number of
requests in the network, for INSD, this algorithm can also be
applied to solve the MSC problem, which contradicts with the
previous inapproximation results. Thus, we can conclude that
the inapproximation ratio of the INSD problem is (1−ε)·lnm,
for any ε > 0.

III. ALGORITHM DESIGN FOR INSD
In this section, we design an approximation algorithm for

the INSD problem (Section III-A) and give the performance
analysis (Section III-B). Moreover, we give some discussions
to enhance our proposed solution (Section III-C).

A. A Knapsack-based Algorithm for INSD

In this section, we present a knapsack-based approximation
algorithm, called KPGD, to solve the INSD problem. We first
consider a simple case, in which server si has been deployed
on switch vi. We will place feasible VNFs on this server so as
to maximize the number of requests covered by these VNFs.
When VNF f has been placed on server si, some requests
will be covered (or processed) by f under the server’s and
switch’s capacity constraints. Therefore, we regard this case as

2364
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 22,2020 at 02:08:41 UTC from IEEE Xplore. Restrictions apply.

5

the 0-1 knapsack problem [35] [36]. Specifically, the knapsack
capacity is the joint consideration of the server’s processing
capacity and switch’s flow-table size constraints. The item
size is the VNF’s processing cost and the item’s profit is
the number of requests covered by this VNF. Similar to the
knapsack problem, the goal of this version is to maximize
the number of requests that can be covered by these VNFs
deployed on the server.

Algorithm 1 KP Algorithm on Switch vi
1: P ← φ, P̃ ← F
2: civ ← c(vi), c

i
s ← c(si)

3: for each VNF f ∈ P̃ do
4: δfi ←

∑
t∈V i

e
|γft |, α

f
i ← |Γ

f
i |

5: βfi ← N(δfi) · θf , ϑfi ← (αfi , β
f
i)

6: P̃ ← P̃ − {f}
7: rearrange the VNFs f ∈ F in the decreasing order with

the unit profit value δfi
‖ϑf

i ‖
8: while αfi ≤ civ and βfi ≤ cis do
9: P ← P

⋃
{f}

10: civ ← civ − α
f
i

11: cis ← cis − β
f
i

12: F ← F − {f}
13: for each VNF f ∈ F do
14: if

∑
fj∈P δ

fj
i ≤ δ

f
i then

15: P ← {f}
16: return P

We adopt a greedy algorithm, called KP, to place some
VNFs on a server so that more requests can be covered
by these VNFs. We first construct a set of request sub-
sets Γ = {γf1v1 , ..., γ

fq
v1 , ..., γ

f1
vz , ..., γ

fq
vz}, where fi ∈ F and

vj ∈ Ve. γfitj denotes the set of requests with egress switch
tj that needs to be processed by VNF fi. Let Γi ⊆ Γ be
the set of requests through switch vi. Moreover, we use Γfi
to denote the set of requests that need to be processed by
VNF f in Γi. We denote P (or P̃) as the set of chosen (or
unchosen) VNFs on this server. The profit value δfi means
the number of requests that can be covered by VNF f on
server si. Besides, we use αfi and βfi to denote the rule cost
and VNF’s processing cost of the requests covered by VNF
f on server si, respectively. For convenience of computing,
the two cost variables are vectorized, which is denoted as
ϑfi = (αfi , β

f
i). We use ‖ϑfi ‖ to represent the norm of the

vector, i.e., ‖ϑfi ‖ =
√

(αfi)2 + (βfi)2. The variable V ie ⊆ Ve
indicates a set of egress switches of the requests which pass
through switch vi.

The KP algorithm is described in Alg. 1. At the beginning,
the KP algorithm initializes some variables, e.g., civ and cis,
to store the available rule and computing resources for VNF
placement (Line 1-2). We compute the profit of each unchosen
VNF f ∈ P̃ . Moreover, we compute the rule cost and
CPU processing cost for each f , respectively (Line 3-8). The
algorithm ranks all the unchosen VNFs in the decreasing order
of the unit profit (Line 9). We then greedily choose the VNFs
with the maximum unit profit under the server processing

capacity and FTS constraints for VNF processing (Line 10-
14). At the end of each iteration, the set of placed VNFs and
the available computing/rule resources will be updated (Line
15-17).

We then propose the greedy KPGD algorithm for the INSD
problem. According to the problem definition, each request
r should traverse the specific SFC in the network. In other
words, each type of VNF f ∈ F needs to cover the request
set Γf = {γfv1 , γ

f
v2 , ..., γ

f
vz}, where vj is an egress switch.

The rest number of requests that VNF f needs to cover is
denoted as gf . Let Ufi be the set of requests that are uncovered
by VNF f on server si. The KPGD algorithm is formally
described in Alg. 2. Our proposed algorithm consists of a
group of iterations, each of which includes two main steps. In
the first step, the algorithm adopts the KP algorithm to derive
the set of chosen VNFs, denoted as Pi, for each switch vi
(Line 8-10). We choose one switch with the maximum profit
for server deployment (Line 11-12). In the second step, the
KPGD algorithm updates the uncovered request set (Line 13-
18). The algorithm will terminate until each request r has
been covered by any VNF in Fr.

Algorithm 2 KPGD: Greedy Algorithm for INSD
1: V ′ ← φ
2: for each VNF f ∈ F do
3: gf ← |Γf |
4: for each switch vi ∈ V do
5: Ufi ← Γfi
6: while gf > 0,∀f ∈ F do
7: Step 1: Choose one switch to deploy a server
8: for each switch vi ∈ V − V

′
do

9: Choose the set of VNFs according to the KP algo-
rithm, Pi ← KP (vi)

10: Select a switch vi with the maximum profit
∑
f∈Pi

δfi
and deploy a server

11: V ′ ← V ′
⋃
{vi}

12: Step 2: Update the request set
13: for each VNF f ∈ Pi do
14: gf ← gf − |Ufi |
15: for each switch vj ∈ V − V ′ do
16: Ufj ← Ufj − U

f
i

17: return V ′

B. Performance Analysis for KPGD
In this section, we analyze the approximation performance

of the KPGD algorithm. KPGD consists of several iterations,
each of which will execute the KP algorithm. Some prior
works [35] [36] have proved that the KP algorithm can achieve
an approximation ratio of 2 for the 0-1 knapsack problem.

Assume that our proposed KPGD algorithm and the optimal
solution will deploy ρ and η servers for the INSD problem,
respectively. We first give some preliminaries for the following
analysis. We use v(k) to denote the index of the chosen
switch for server deployment in the k-th iteration of the KPGD
algorithm. The set of requests that have not been covered by
VNF f on server si after the k-th iteration, is denoted as
Γfi (k), i.e., Γfi (k) = Γfi −

⋃k
l=1 Γfv(l). Specially, Γfi (0) = Γfi .

2365
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 22,2020 at 02:08:41 UTC from IEEE Xplore. Restrictions apply.

6

Without loss of generality, assume that the optimal solution
for INSD will choose one switch for server deployment during
each iteration. In the optimal solution, the set of requests
covered by VNF f is denoted as Γ̃f and will be updated with
algorithm execution. At the beginning, Γ̃f = φ for each VNF
f ∈ F . When switch vi is chosen to deploy a server si, a set of
requests, that will be covered by VNF f placed on server si, is
denoted as Afi , i.e., Afi = Γfi −Γ̃f . Similarly, we define Afi (k)
as the set of requests in Afi that have not been covered by VNF
f after the k-th iteration. That is Afi (k) = Afi −

⋃k
l=1 Γfv(l).

The set of chosen VNFs on server si in the k-th iteration
is denoted as Pi(k) and the profit of VNF f on server si in
the k-th iteration is δfi (k) = |Γfi (k − 1) − Γfi (k)|. Then we
can derive that the total profit δi(k) =

∑
f∈Pi(k)

δfi (k) on
this server. The total cost on server si in the k-th iteration
is ϑi(k) =

∑
f∈Pi(k)

‖ϑfi ‖. Besides, in the k-th iteration of
KPGD, the profit of covered requests in Afi is denoted as
ϕfi (k) = |Afi (k − 1) − Afi (k)|. Thus, the total profit in the
k-th iteration is ϕi(k) =

∑
f∈F ϕ

f
i (k),∀f ∈ F . It follows

ϕi(k) ≤
∑
f∈F |A

f
i |.

Lemma 3. For each k ∈ {1, 2, ..., ρ}, it follows
ϕi(k) ≤ 2 · δv(k)(k) (2)

Proof. In each iteration of KPGD, the knapsack problem can
be solved for each switch which has not been chosen to deploy
the server. hi(k) denotes the optimal profit of KPGD on switch
vi in the k-th iteration. So we have ϕi(k) ≤ hi(k). Since the
approximation ratio of KP is 2, and δi(k) is the approximate
result of KP, we can derive that hi(k) ≤ 2 · δi(k). Because
KPGD always chooses a switch with the maximum profit for
server deployment in each iteration, we have δi(k) ≤ δv(k)(k).
Thus, we can conclude that ϕi(k) ≤ 2 · δv(k)(k),∀k ∈
{1, 2, ..., ρ}.

In the KPGD algorithm, the set of requests that need to
be covered by VNF f after the k-th iteration is denoted as
λf (k). λ(k) is the total number of the requests that need to
covered by all VNFs, i.e., λ(k) =

∑
f∈F λf (k). Note that

λ(0) =
∑η
i=1

∑
f∈P∗i

|Afi |. Then we prove that the total
profit of the chosen switch in the k-th iteration is more than
a given value as follows. The request set will be covered
x times, if it is covered by x types of VNFs. We define
the possible times the requests are covered as an integer
variable τi ∈ {1, 2, ...,

∑
f∈P∗i

|Afi |} for ∀i ∈ {1, 2, ..., η}.
Thus, there are possibly λ(0) =

∑η
i=1

∑
f∈P∗i

|Afi | integers,
perhaps including some duplicated values. Then we rearrange
these integer values into a non-decreasing sequence. For
simplicity, we use ex to denote these values and set them
as e1 ≤ e2 ≤ ... ≤ eλ(0). For example, let η = 3,
τ1 = {1}, τ2 = {1, 2, 3}, τ3 = {1, 2}, so there are 6
integers, i.e., λ(0) = 6. We rearrange these 6 integers as
1 ≤ 1 ≤ 1 ≤ 2 ≤ 2 ≤ 3.

Lemma 4. For each k ∈ {1, 2, ..., ρ}, we have
eλ(k) ≤ 2 · δv(k)(k) (3)

Proof. After the k-th iteration, the KPGD algorithm will

incrementally cover the requests λ(k) times. If KPGD covers
all rest requests in the optimal sets, the cover ratio for each
VNF f ∈ F can be guaranteed. That is,

∑η
i=1 ϕi(k) ≥ λ(k).

According to the definition of ex and ϕi(k), we can derive
that ex is not more than ϕi(k), i.e., ex ∈ {1, 2, ..., ϕi(k)},
∀i ∈ {1, 2, ..., η}. According to Lemma 3, we have

ex ≤ 2 · δv(k)(k) (4)
Since ∑η

i=1 ϕi(k) ≥ λ(k) and
ϕi(k) ≤ max

s≤η
{
∑
f∈F |Afs |},∀i ∈ {1, 2, ..., η}

There are at least λ(k) indices x satisfying Eq. (4).
Combining e1 ≤ e2 ≤ ... ≤ eλ(0), we can derive that
eλ(k) ≤ 2 · δv(k)(k),∀k ∈ {1, 2, ..., ρ}.

For ease expression, we use q and p to denote the number
of VNF’s categories and the maximum number of requests
through a switch in the network, respectively.

Theorem 5. Our proposed KPGD algorithm can achieve 2 ·
H(q · p)-approximation for the INSD problem.

Proof. According to Lemma. 4, for each k ∈ {1, 2, ..., ρ}, we
have

2 · δv(k)(k) ≥ eλ(k) ≥ eλ(k)−1 ≥ ... ≥ eλ(k+1)+1

⇒ 1

2 · δv(k)(k)
≤ 1

eλ(k)
≤ 1

eλ(k)−1
≤ ... ≤ 1

eλ(k+1)+1

Since λ(k)− λ(k + 1) = δv(k)(k), it follows

1 ≤ 2 · (1

eλ(k)
+

1

eλ(k)−1
+ ...+

1

eλ(k+1)+1
)

Combining the above inequalities, we can derive that

ρ ≤2 · (1

eλ(1)
+ ...+

1

e1
) ≤ 2 · (1

eλ(0)
+ ...+

1

e1
)

=2 ·
η∑
i=1

H(
∑
f∈P∗i

|Afi |) ≤ 2 · η ·H(q · p)
(5)

We should note that the third equation in Eq. (5) is based on
the definition of ex and the last inequality in Eq. (5) is based
on

∑
f∈P∗i

|Afi | ≤
∑
f∈F |Γ

f
i | ≤ q · p. So we have

ρ

η
≤ 2 ·H(q · p)

Thus, we can conclude that KPGD can achieve 2 ·H(q · p)-
approximation for the INSD problem.

C. Discussion

In this section, we discuss some practical issues to enhance
the proposed solution.

1) In practice, the number of requests in the network will
vary from time to time. For example, the number of requests
may peak during the day and underestimate at night. However,
deploying servers over time is unrealistic and requires a lot
of resources (e.g., time or deployment cost), even leading to
network failure. Thus, we focus on server deployment during
the request peak, so that time-varying requests can also be
processed by the specific network functions.

2) After the server deployment problem has been solved, the
SFC requirement will be posed for request routing. Different
methods can be applied for SFC routing. In addition to our
proposed scheme of tag operations, Network Service Header

2366
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 22,2020 at 02:08:41 UTC from IEEE Xplore. Restrictions apply.

7

(NSH), which is a data plane transmission protocol, is also
a practical solution for SFC routing. It realizes the strategy
of SFC control plane and helps users create and deploy
SFC dynamically. Since this paper focuses on the server
deployment problem, we ignore the detailed implementation
of SFC routing here.

IV. PERFORMANCE EVALUATION

This section first introduces the metrics and benchmarks for
performance comparison (Section IV-A). Then, we evaluate
our proposed algorithm by comparing with the previous meth-
ods through large-scale simulations (Section IV-B). Finally,
we implement our algorithm on the SDN platform with
physical Pica8 switches [37] and Open vSwitches (OVSes)
[25], and give the testing results (Section IV-C).

A. Performance Metrics and Benchmarks

In this paper, we design the incremental server deploy-
ment algorithm for the construction of scalable NFV-enabled
networks. We adopt the following metrics to evaluate scala-
bility and efficiency of our proposed algorithm.

1) The number of deployed servers. To satisfy the SFC
requirements of all the requests, more servers will be
deployed in the network with the increasing number of
requests. We count the number of deployed servers in
the network. Besides, the server utilization is the CPU
computing load on a server divided by its computing
capacity. Low server utilization indicates a huge waste of
computing resources on servers. We focus on the CPU
resource consumption for VNF processing of all servers
in the network.

2) The maximum (or Max.) number of rules on any switch
at any time during the simulation. When the servers
have been deployed in the network, rules should be
installed for VNF processing on the switches. Thus, we
measure the number of installed rules on each switch
and determine the maximum number of rules among all
switches.

3) Considering traffic dynamics (e.g., traffic rate fluctua-
tion), if all requests follow the wildcard rules for VNF
processing, it may lead to processing congestion on some
server(s). Thus, we need to install some extra request-
based rules in the test-bed evaluation so that some
requests will be processed on different servers. How to
install extra rules for congestion avoidance is similar to
the solution for link congestion avoidance in [38]. Due to
space limitations, we omit the detailed description here.
During the update process, update delay and control
overhead is important for scalability. Specifically, for
update delay, we measure the during time of update
procedure. Moreover, for control overhead, the total
amount of traffic was measured between the conrtoller
and the switches during the update procedure. We use a
tool Cbench [39] to test the performance of OpenFlow
controllers.

 20

 29

 38

 47

 56

 65

12 24 36 48 60

N
o

.
o

f
S

er
v

er
s

No. of Requests (× 10
3
)

KPGD

GFT

T-SAT

 10

 15

 20

 25

 30

12 24 36 48 60

N
o

.
o

f
S

er
v

er
s

No. of Requests (× 10
3
)

KPGD

GFT

T-SAT

Fig. 3: No. of Servers vs. No. of Requests without FTS Constraint.
Left plot: Topology (a); right plot: Topology (b).

 0

 14

 28

 42

 56

 70

12 24 36 48 60

S
er

v
er

 U
ti

li
za

ti
o

n
 (

%
)

No. of Requests (× 10
3
)

T-SAT

KPGD

GFT

 0

 20

 40

 60

 80

 100

12 24 36 48 60

S
er

v
er

 U
ti

li
za

ti
o

n
 (

%
)

No. of Requests (× 10
3
)

T-SAT

KPGD

GFT

Fig. 4: Server Utilization vs. No. of Requests without FTS Constraint.
Left plot: Topology (a); right plot: Topology (b).

B. Simulation Evaluation

1) Benchmarks: To evaluate how well our proposed algo-
rithm performs, we compare with the other two benchmarks.
Sang et al. [9] study the VNF placement problem, which
minimizes the total number of VNF instances, subject to the
constraint that all the requests need to be fully processed. The
proposed algorithm, called GFT, considers the joint placement
and allocation of VNF instances in a new NFV-enabled
networking paradigm. Not only does the algorithm need to
decide how many VNF instances to place on each server, but
also need to determine how to allocate the computing resource
for each VNF instance to process the requests through each
switch. The second benchmark is called T-SAT [17], which
addresses the VNF placement problem. The proposed solution
first accomplishes the mapping of the SFCs or VNFs, then
determines the placement of the related VNFs and allocates
resources for VNFs based on the mapping results and the
workloads of VNFs. Both two benchmarks process packets
according to the request granularity.

2) Simulation Settings: In the simulations, as running ex-
amples, we select two typical and practical topologies, one for
data center networks and the other for campus networks. The
first topology, denoted as (a), is the fat-tree topology [40],
which has been widely used in many data center networks.
The fat-tree topology contains in total 320 switches (including
128 edge switches, 128 aggregation switches, and 64 core
switches) and 1024 terminals. The second one, denoted as
(b), is a campus network topology [41]. The topology (b)
contains 100 switches and 200 terminals. We generate requests
following DCTCP (data center TCP) and CPTCP (campus
TCP) patterns for two topologies [42]. Since the topologies
do not provide VNF information, we assume that there have
deployed 5 types of VNFs (e.g., IDS, Proxy, Monitor, Firewall
and IPSec) on servers. We randomly generate an SFC require-
ment for each request. We execute each simulation 100 times,
and take the average of the numerical results.

3) Simulation Results: We run four groups of simulations
on two different topologies to check the effectiveness of the

2367
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 22,2020 at 02:08:41 UTC from IEEE Xplore. Restrictions apply.

8

 30

 55

 80

 105

 130

12 24 36 48 60

N
o

.
o

f
S

er
v

er
s

No. of Requests (× 10
3
)

GFT

T-SAT

KPGD

 15

 30

 45

 60

 75

12 24 36 48 60

N
o

.
o

f
S

er
v

er
s

No. of Requests (× 10
3
)

GFT

T-SAT

KPGD

Fig. 5: No. of Servers vs. No. of Requests with FTS Constraint.
Left plot: Topology (a); right plot: Topology (b).

 0

 15

 30

 45

 60

12 24 36 48 60

S
er

v
er

 U
ti

li
za

ti
o

n
 (

%
)

No. of Requests (× 10
3
)

KPGD

T-SAT

GFT

 0

 16

 32

 48

 64

 80

12 24 36 48 60

S
er

v
er

 U
ti

li
za

ti
o

n
 (

%
)

No. of Requests (× 10
3
)

KPGD

T-SAT

GFT

Fig. 6: Server Utilization vs. No. of Requests with FTS Constraint.
Left plot: Topology (a); right plot: Topology (b).

8

16

24

32

40

12 24 36 48 60

M
ax

.
R

u
le

s
(×

 1
0

 3
)

No. of Requests (× 10
3
)

GFT

T-SAT

KPGD

10

20

30

40

50

12 24 36 48 60

M
ax

.
R

u
le

s
(×

 1
0

 3
)

No. of Requests (× 10
3
)

GFT

T-SAT

KPGD

Fig. 7: Max. Rules vs. No. of Requests. Left plot: Topology (a);
right plot: Topology (b).

 0

 100

 200

 300

 400

 500

12 24 36 48 60

C
o
n
tr

o
l

O
v
er

h
ea

d
 (

M
b
)

No. of Requests (× 10
3
)

GFT

T-SAT

KPGD

 0

 120

 240

 360

 480

 600

12 24 36 48 60

C
o
n
tr

o
l

O
v
er

h
ea

d
 (

M
b
)

No. of Requests (× 10
3
)

GFT

T-SAT

KPGD

Fig. 8: Control Overhead vs. No. of Requests. Left plot: Topology
(a); right plot: Topology (b).

proposed algorithms.
The first set of two simulations observes the deployment

cost (e.g., the number of servers) and server utilization without
the FTS constraint on switches. Fig. 3 shows the number of
deployed servers by changing the number of requests in both
two topologies. With more requests from 12K to 60K, the
number of deployed servers in the network is almost linearly
increasing in topology (a). Given a fixed number of requests,
the number of deployed servers by three solutions is very
close. However, KPGD may deploy a little more servers than
GFT and T-SAT on both two topologies. For example, when
there are 60K requests in the network, KPGD needs to deploy
63 servers, while GFT and T-SAT need to deploy 60 and 58
servers in topology (a), respectively. In conclusion, our KPGD
algorithm will increase the server deployment cost by about
5-9% compared with GFT and T-SAT. That’s because both
GFT and T-SAT control the requests in a fine-grained manner.
However, two solutions require a massive number of rules on
switches compared with our solution, which will be illustrated
in Fig. 7.

Fig. 4 shows the server utilization of three algorithms. The
figure demonstrates that server utilization is increasing linearly
with more requests in both two topologies. In topology (a),
when there are 36K requests, the server utilization of GFT is
less than that of both KPGD and T-SAT. That is, KPGD can
improve server utilization by about 10% compared to GFT.
However, KPGD may achieve slightly (< 5% on average)
worse performance in terms of server deployment cost without
the FTS constraint compared with T-SAT and GFT.

The second set of simulations observes the number of
deployed servers and server utilization with the FTS constraint
(e.g., 4K) for VNF processing by changing the number of
requests from 12K to 60K in the network. By the left plot
of Fig. 5, our proposed solution can reduce the number of
deployed servers compared with the other two solutions. For
example, when there are 60K requests in the network, the
number of deployed servers for KPGD is 76, while T-SAT
and GFT need to deploy 112 and 128 servers. So KPGD can
reduce the number of deployed servers by about 32% and 41%
compared with T-SAT and GFT, respectively. That’s because
GFT and T-SAT install the rules on the switches for VNF

processing with the request granularity, which may require
a massive number of rules and violate the FTS constraint.
KPGD can effectively reduce the number of installed rule by
using the wildcard. Besides, Fig. 6 shows that KPGD can
improve server utilization by about 47% and 45%, respec-
tively, compared with GFT and T-SAT in topology (b). Thus,
our proposed solution can deploy fewer servers and achieve
better server utilization than the other two solutions with the
FTS constraint.

The third set of two simulations observes the TCAM
consumption (e.g., the maximum number of rules) of three
solutions. As shown in Fig. 7, the maximum number of
required rules increases for all solutions with the increasing
number of requests. However, the increasing ratio of KPGD
is much slower than that of the other two benchmarks. In
comparison, KPGD requires fewer rules than GFT and T-
SAT. For example, given 36K requests in topology (a), KPGD
uses a maximum number of 1.4K rules, while T-SAT and
T-SAT need about 12.1K and 17.9K rules, respectively. In
other words, KPGD can reduce the maximum number of
required rules by about 88% and 92% compared with T-SAT
and GFT, respectively. Therefore, our proposed solution can
significantly reduce the TCAM consumption of all switches
compared with the existing solutions.

The last set of simulations observes the performance in
terms of control traffic overhead of three solutions, including
GFT, T-SAT and KPGD. As shown in Fig. 8, with the number
of requests increasing, GFT and T-SAT deploy more rules
than KPGD, leading to higher control traffic overhead. For
example, when there are 36K requests in topology (a), the
control overhead of KPGD is 40Mb, while that of T-SAT and
GFT increases to 150Mb and 340Mb, respectively. In other
words, KPGD can reduce control overhead by about 73% and
88% compared with T-SAT and GFT, respectively.

From these simulation results in Figs. 3-8, we can make the
following three conclusions. First, by Figs. 3-6, our KPGD
solution may achieve a slightly worse but comparable perfor-
mance (< 5% on average) in terms of servers deployment cost
and server utilization without the FTS constraint. However,
KPGD can reduce the server deployment cost by about 36%
and improve server utilization by about 47% compared with

2368
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 22,2020 at 02:08:41 UTC from IEEE Xplore. Restrictions apply.

9

 0

 50

 100

 150

 200

 250

 300

V1 V2 V3 V4 V5 V6 V7 V8 Max Avg

N
o

.
o

f
R

u
le

s

Swith ID

GFT

T-SAT

KPGD

Fig. 9: No. of Rules on Each Switch in Telstra
Topology

0

0.2

0.4

0.6

0.8

1

3 6 9

U
p
d
at

e
D

el
ay

 (
s)

No. of Requests (×10
2
)

GFT

T-SAT

KPGD

Fig. 10: Update Delay vs. No. of Re-
quests in Telstra Topology

 0

 40

 80

 120

 160

 200

3 6 9

C
o

n
tr

o
l

O
v

er
h

ea
d

 (
K

b
)

No. of Requests (× 10
2
)

GFT

T-SAT

KPGD

Fig. 11: Control Overhead vs. No. of
Request in Telstra Topology

GFT and T-SAT with the FTS constraint. Second, by Figs.
7, our proposed solution can reduce the number of required
rules by 90% compared with two benchmarks. Third, Fig. 8
shows that KPGD can reduce the control overhead by about
88% and 73% compared with GFT and T-SAT, respectively.
These results show that our KPGD algorithm can significantly
improve the scalability of NFV-based networks compared with
two benchmarks.

C. Test-bed Evaluation
1) Implementation on the Platform: We implement the

GFT, T-SAT and KPGD algorithms on a real test-bed. The
topology of our platform is a small-scale topology Telstra
from the Rocketfuel dataset [41]. The topology is composed
of four main parts: a server installed with the controller’s
software, a set of OpenFlow enabled switches, a set of servers
and some terminals. Specifically, we choose RYU [43] as the
controller software running on a server with a core i7-9700k
and 32GB of RAM. We build the data plane with 2 Pica8
3297 switches and 6 Open vSwitches (OVSes with version
2.8.5). Each OVS is run on a single server with a core i7-
8700k processor and 32GB of RAM. Besides, there are three
kinds of VNFs, including IDS, Proxy and Monitor on servers,
each of which is equipped with a core i5-3470 processor and
8GB of RAM.

We adopt the Packet Generator (PktGen) [42] to generate
network traffic, which is a powerful tool also used by [44]
[45]. Using PktGen, requests can be generated with various
sizes and patterns. Since there are 8 switches in the network,
each 5-tuple flow is regarded as a request so as to generate
more requests in the test-bed. In the experiments, we generate
DCTCP pattern requests [42]. According to the request size
distribution, the rate of 40% requests is set as 500Kbps and
that of the rest requests is set as 800Kbps. We divide the
differentiated services code point (DSCP) into four parts,
i.e., DSCP 0-3, each of which accounts for 25%. Since we
implement our algorithm on a small-scale testbed, the server
deployment problem can be optimally solved by the integer
programming solver. Thus, we ignore the server deployment
performance comparison among three algorithms here.

2) Testing Results: In the first set of experiments, we
generate 30s TCP requests in the network. As shown in Fig.
9, we count the number of installed rules on each switch and
determine the maximum (average) number of these rules. Our
proposed KPGD solution needs to install fewer rules than
other solutions. For example, it needs to install 220 and 150

rules on switch v4 by GFT and T-SAT, respectively, while
KPGD installs only about 35 rules on this switch. In other
words, KPGD can reduce the maximum number of rules
by about 84% and 77% compared with GFT and T-SAT,
respectively.

We also conduct the traffic dynamics, which require to
dynamically update rules in the second set of experiments, on
the test-bed implementation. We change the requests in the
network over time. If these rules are updated at a low speed,
the network performance will be greatly decreased. KPGD
can achieve a lower update delay compared with the other two
benchmarks by Fig. 10. Because our proposed algorithm can
significantly reduce the number of required rules compared
with other solutions. For example, when there are 600 requests
in the network, KPGD reduces the number of rules by about
75% and 80% compared with T-SAT and GFT, respectively.
Accordingly, less control overhead will be required between
the controllers and the switches during update procedure.
For example, Fig. 11 shows that KPGD can reduce control
overhead by about 76% and 77% compared with T-SAT and
GFT, respectively. Lower update delay and control traffic
overhead show the better scalability of KPGD compared with
two benchmarks.

V. CONCLUSIONS

In this paper, we propose the incremental server deployment
problem for construction of scalable NFV-based networks.
We give the inapproximation performance of INSD with a
ratio of (1 − ε) lnm, for any ε > 0 and m is the number
of requests. We then design an efficient algorithm with an
approximation performance of 2 · H(q · p) for INSD, where
q is the number of VNF’s categories and p is the maximum
number of requests through a switch. The experimental results
and extensive simulation results show the high efficiency of
our proposed algorithm. In the future, we will study the server
deployment without the pre-computed path for each request
and build a moderate-size physical platform to support NFV
and optimize the SFC realization.

VI. ACKNOWLEDGEMENT

This research of Liu, Xu, Zhao, Fan and Huang is par-
tially supported by the National Science Foundation of China
(NSFC) under Grants 61822210, U1709217, and 61936015;
by Anhui Initiative in Quantum Information Technologies
under No.AHY150300. This research of Qian is partially
supported by National Science Foundation Grant 1750704.

2369
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 22,2020 at 02:08:41 UTC from IEEE Xplore. Restrictions apply.

10

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[2] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” in ACM SIGCOMM
computer communication review, vol. 43, no. 4. ACM, 2013, pp. 27–
38.

[3] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” IEEE/ACM Transactions on Networking (TON), vol. 26, no. 4,
pp. 1562–1576, 2018.

[4] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “Nfv: State of the
art, challenges and implementation in next generation mobile networks
(vepc),” arXiv preprint arXiv:1409.4149, 2014.

[5] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, P. Ingram, E. J. Jackson et al., “Network
virtualization in multi-tenant datacenters,” in NSDI, vol. 14, 2014, pp.
203–216.

[6] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing
chains of virtual network functions,” in 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet). IEEE, 2014, pp. 7–13.

[7] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in 2015 IEEE Conference on
Computer Communications (INFOCOM). IEEE, 2015, pp. 1346–1354.

[8] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in 2015 IEEE
4th International Conference on Cloud Networking (CloudNet). IEEE,
2015, pp. 255–260.

[9] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably effi-
cient algorithms for joint placement and allocation of virtual network
functions,” in IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 2017, pp. 1–9.

[10] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,
“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Computer Communications, vol. 102,
pp. 1–16, 2017.

[11] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch, “Approxi-
mation algorithms for the nfv service distribution problem,” in IEEE IN-
FOCOM 2017-IEEE Conference on Computer Communications. IEEE,
2017, pp. 1–9.

[12] X. Li and C. Qian, “An nfv orchestration framework for interference-
free policy enforcement,” in Proc. of IEEE ICDCS, 2016.

[13] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization.” in CloudNet, 2015, pp.
171–177.

[14] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 731–
741.

[15] N. Rasmussen, “Strategies for deploying blade servers in existing data
centers,” White Paper, vol. 125, pp. 1–14, 2006.

[16] B. Leng, L. Huang, C. Qiao, and H. Xu, “A light-weight approach to
obtaining nf state information in sdn+ nfv networks,” in IEEE INFO-
COM 2018-IEEE Conference on Computer Communications. IEEE,
2018, pp. 971–979.

[17] D. Li, P. Hong, K. Xue et al., “Virtual network function placement
considering resource optimization and sfc requests in cloud datacenter,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 7,
pp. 1664–1677, 2018.

[18] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite cacheflow
in software-defined networks,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 175–180.

[19] FAST. (2016) Fpga based sdn swithing. [Online]. Available: https:
//fast-switch.github.io/

[20] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, “Countmax: A
lightweight and cooperative sketch measurement for software-defined
networks,” IEEE/ACM Transactions on Networking (TON), vol. 26,
no. 6, pp. 2774–2786, 2018.

[21] P. Wang, H. Xu, L. Huang, C. Qian, S. Wang, and Y. Sun, “Minimizing
controller response time through flow redirecting in sdns,” IEEE/ACM
Transactions on Networking (TON), vol. 26, no. 1, pp. 562–575, 2018.

[22] H. Xu, S. Chen, Q. Ma, and L. Huang, “Lightweight flow distribution
for collaborative traffic measurement in software defined networks,”
in IEEE INFOCOM 2019-IEEE Conference on Computer Communi-
cations. IEEE, 2019, pp. 1108–1116.

[23] L. Guo, J. Pang, and A. Walid, “Dynamic service function chaining in
sdn-enabled networks with middleboxes,” in Network Protocols (ICNP),
2016 IEEE 24th International Conference on. IEEE, 2016, pp. 1–10.

[24] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The
middlebox manifesto: enabling innovation in middlebox deployment,”
in Proceedings of the 10th ACM Workshop on Hot Topics in Networks.
AcM, 2011, p. 21.

[25] OVS. (2018) Open vswitch: open virtual switch. [Online]. Available:
http://openvswitch.org/

[26] B. Switches. (2014). [Online]. Available: https://www.barefootnetworks.
com

[27] G. Zhao, H. Xu, J. Liu, C. Qian, J. Ge, and L. Huang, “Safe-me:
Scalable and flexible middlebox policy enforcement with software
defined networking,” in 2019 IEEE 27th International Conference on
Network Protocols (ICNP). IEEE, 2019, pp. 1–11.

[28] A. Gushchin, A. Walid, and A. Tang, “Scalable routing in sdn-enabled
networks with consolidated middleboxes,” in Proceedings of the 2015
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization. ACM, 2015, pp. 55–60.

[29] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Transac-
tions on Network and Service Management, vol. 13, no. 4, pp. 725–739,
2016.

[30] H. Xu, J. Liu, C. Qian, H. Huang, and C. Qiao, “Reducing controller
response time with hybrid routing in software defined networks,”
Computer Networks, vol. 164, p. 106891, 2019.

[31] J. Liu, L. Huang, C. Qiao, and S. Wang, “Tor-me: Reducing controller
response time based on rings in software defined networks,” in 2019
IEEE 11th International Conference on Communication Software and
Networks (ICCSN). IEEE, 2019, pp. 27–33.

[32] C. Gao, X. Yao, T. Weise, and J. Li, “An efficient local search heuristic
with row weighting for the unicost set covering problem,” European
Journal of Operational Research, vol. 246, no. 3, pp. 750–761, 2015.

[33] R. Raz and S. Safra, “A sub-constant error-probability low-degree test,
and a sub-constant error-probability pcp characterization of np,” in
STOC, vol. 97. Citeseer, 1997, pp. 475–484.

[34] U. Feige, “A threshold of ln n for approximating set cover,” Journal of
the ACM (JACM), vol. 45, no. 4, pp. 634–652, 1998.

[35] A. Gupta, M. Pál, R. Ravi, and A. Sinha, “What about wednesday?
approximation algorithms for multistage stochastic optimization,” in
Approximation, Randomization and Combinatorial Optimization. Algo-
rithms and Techniques. Springer, 2005, pp. 86–98.

[36] W. Shih, “A branch and bound method for the multiconstraint zero-
one knapsack problem,” Journal of the Operational Research Society,
vol. 30, no. 4, pp. 369–378, 1979.

[37] Pica8. (2014) Pica8 p3297 switches. [Online]. Available: https://www.
pica8.com/wp-content/uploads/pica8-datasheet-48x1gbe-p3297.pdf

[38] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined
networking through hybrid switching,” in IEEE INFOCOM, 2017.

[39] Cbench. (2013) Controller benchmarker. [Online]. Available: https:
//github.com/mininet/oflops/tree/master/cbench

[40] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[41] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topologies
with rocketfuel,” in ACM SIGCOMM Computer Communication Review,
vol. 32, no. 4. ACM, 2002, pp. 133–145.

[42] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling {ECN} in multi-
service multi-queue data centers,” in 13th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 16), 2016,
pp. 537–549.

[43] Ryu. (2017). [Online]. Available: https://osrg.github.io/ryu/
[44] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei, P. Cheng, L. L. Luo,

Y. Xiong, X. Wang et al., “Fast and cautious: Leveraging multi-path
diversity for transport loss recovery in data centers,” in 2016 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 16), 2016, pp. 29–42.

[45] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proceedings of the 2016
ACM SIGCOMM Conference. ACM, 2016, pp. 1–14.

2370
Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 22,2020 at 02:08:41 UTC from IEEE Xplore. Restrictions apply.

